DAY-AHEAD ECONOMIC LOAD DISPATCH FOR OIL SHALE POWER PLANTS IN DEREGULATED ELECTRICITY MARKET

Dr. Nadežda Dementjeva

Outline

- Introduction
- Research objects
- Optimization techniques
- Model formulation
- Results and discussion
- Conclusions

Importance of the topic

- electricity market deregulation:
 - competitive conditions
 - price fluctuations
- traditional economic load dispatch:
 - environmental impact
 - technological restrictions
- complex undertaking:
 - oil shale production characteristics
 - lack of algorithm and tool

Objectives of the paper

- elaboration of day-ahead economic load dispatch algorithm;
- algorithm implementation by using different optimization techniques;
- effectiveness estimation of used optimization techniques.

Tasks of the paper

- input-output characteristics determination;
- analysis and evaluation of the existing optimization techniques;
- practical testing of proposed algorithm;
- evaluation and summing up the research results.

Input-output characteristics

input and output characteristics from deregulated market;

PL and PH - Prices for each area when full utilization of trading capacity

 $P_{\text{Cap}=0}$ + Price in area with isolated price calculation.

Figure 1. Market price and market balance principle Source: NordPoolSpot

- input and output characteristics from power plant units;
- limitations related to technological and environmental requirements;
- optimality conditions of power units operation.

NordPoolSpot market

Figure 2. Electrical power price and volume fluctuations of a typical winter week Source: NordPoolSpot

Optimization techniques

- primal simplex maximization problem;
- dual simplex minimization problem;

gives an upper and lower bound on the optimum value of the solution

 interior-point method – the improvement over simplex algorithms, reaches an optimal solution by traversing the interior.

Optimization techniques

Figure 3. The primal, dual and interior-point method solution Source: (Dantzig, Thapa, 2003)

Model formulation

Objective Function:

Minimize
$$C_{tot}^{VC}(t) = \sum_{u=1}^{m} C_{u}^{B}(t) + \sum_{u=1}^{m} C_{u}^{w}(t) + \sum_{u=1}^{m} C_{u}^{SU}(t)$$

 $C_{tot}^{VC}(t)$ - total variable costs,

 $C_u^B(t)$ - primary energy costs,

 $C_u^w(t)$ - environmental impact costs,

 $C_u^{SU}(t)$ - start-up costs,

u - power units, u = 1,...,m

t - time interval.

Model constraints

- NordPoolSpot electricity production volume: $P_e^{NPS}(t) \sum_{u=1}^{m} P_u(t) = 0$
- Electrical power limits to the power units: $P_u^{min} \le P_u(t) \le P_u^{max}$
- Thermal load for cogeneration unit: $Q^{D}(t) \sum_{u=1}^{m} Q_{u}(t) = 0$
- Heat power limits to the power units: $Q_u^{min} \leq Q_u(t) \leq Q_u^{max}$
- Ramp rate requirements: $P_{u,\tau+1} P_{u,\tau} \le R_u$
- Emission limit values: $W_{u,e}(t) \leq W_{u,e}^{max}$
- Retort gas usage limitation: $B_{u,RG}(t) \leq B_{u,RG}^{max}$
- Restriction for number of start-ups: $m_u(t) \leq m_u^{max}$
- Minimum down-time: $T_{u,t}^{down-time} \ge T_{stay-off}^{min}$
- Minimum up-time: $T_{u,t} \ge T_{must-run}^{min}$

Results and discussion (1/5)

Algorithm	Manufacturing variable costs, m €	Manufacturing fixed costs, m €	Generation costs, m €	CPU*, sec
Winter week				
Interior-point	9,93	1,67	11,60	509
Dual simplex	9,96	1,67	11,63	515
Primal simplex	9,99	1,67	11,66	576
Summer week				
Interior-point	6,88	1,67	8,07	528
Dual simplex	6,88	1,67	8,07	529
Primal simplex	6,88	1,67	8,07	544

Table 1. Generation costs and CPU time for winter and summer week Source: Compiled by the author

^{*} CPU - central processing unit

Results and discussion (2/5)

Figure 4. The optimal electrical power output of the power units in the winter week Source: Compiled according to the author's calculations

- Total generation costs 11,6 m €
- CPU time 509 sec

Results and discussion (3/5)

Figure 5. The optimal electrical power output of the power units in the summer week Source: Compiled according to the author's calculations

- Total generation costs 8,1 m €
- CPU time 528 sec

Results and discussion (4/5)

Figure 6. Variable costs of the power plants in the winter week Source: Compiled according to the author's calculations

Results and discussion (5/5)

Figure 7. Variable costs of the power plants in the summer week Source: Compiled according to the author's calculations

Conclusions

- 42 tests have been carried out with different properties;
- interior-point algorithm provides the best performance with less CPU time for solving;
- the results using primal, dual and interior-point methods have a marginal difference;
- implementation of algorithm could decrease the variable costs of power plant up to 9%;
- proposed algorithm served as a basis for more accurate economic dispatch model.

THANK YOU!

Nadežda Dementjeva, PhD, MBA

Head of Production Planning Eesti Energia AS Energy Trading nadezda.dementjeva@energia.ee

